

Categoria 07 PI Strumentazione di Processo Process Instrumentation

PITT Sonde Trasmettitori Temperatura Temperature Transmitters

La categoria PITT raggruppa la famiglia dei trasmettitori di temperatura o sonde termometriche.

Una vastissima gamma di sonde, in modelli standard o speciali su richiesta del cliente per tutte le necessità applicative.

Trasmettitori da testa oppure per montaggio su guida o in campo, possono essere facilmente collegati alle più svariate **termoresistenze** e **termocoppie**.

Disponibili a scelta senza o con protezione antideflagrante nonché in esecuzioni a sicurezza intrinseca.

A questi strumenti si applicano le classi di accuratezza A/B e 1/3 DIN secondo la norma IEC/EN 60751.

Della categoria Trasmettitori di Temperatura, fanno parte i seguenti prodotti:

- termoresistenze Pt100 per applicazioni industriali e per uso alimentare
- termocoppie
- trasmettitori in tecnica 2 fili OUT 4/2mA
- sonde campione e test in laboratorio accreditato
- accessori: pozzetti, raccordi scorrevoli, cavi speciali

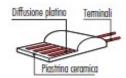
Termometri a resistenza, termoresistenze:

- sono realizzate con filo metallico avvolto su un supporto isolante, variano la loro resistenza elettrica al variare della temperatura.
- le termoresistenze più diffuse sono le $Pt100\Omega$ @ $0^{\circ}c$ con una variazione di circa $0.385\Omega/^{\circ}c$.

Termometri a coppia termoelettrica, termocoppie:

- sono formate dalla giunzione di 2 fili metallici di materiale diverso.
- per l'effetto termoelettrico si genera una forza elettromotrice proporzionale alla differenza tra la temperatura del giunto caldo (di misura) e quella del giunto freddo (di riferimento).

INFORMAZIONI E CARATTERISTICHE TECNICHE


Termometri a resistenza, termoresistenze:

- sono realizzate con filo metallico avvolto su un supporto isolante, variano la loro resistenza elettrica al variare della temperatura.
- per le caratteristiche di elevata resistività, di ottima stabilità nel tempo, il platino è il filo più utilizzato nella quasi totalità delle applicazioni.
- le più diffuse sono le Pt100 Ω @ 0°c con una variazione di circa 0.385 Ω /°c secondo EN 60751.

Tecniche costruttive più note nelle applicazioni industriali

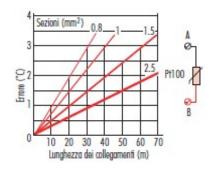
Film sottile 250°/400°c max

(limite 250°c per le sonde con cavo) elemento utilizzato per le **sonde STD** Il platino è diffuso su una piastrina in ceramica


Vetro 550°c max

Il filo è avvolto su un supporto di vetro e rivestito di vetro

Ceramica 750°c max


Il filo spiralato è incapsulato e cementato in un involucro di allumina

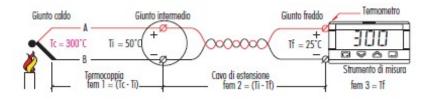
Collegamento delle termoresistenze secondo IEC 751

Tecnica 2 fili

poco usata perché introduce degli errori di misura

Tecnica 3 fili

la più diffusa per applicazioni industriali


Tecnica 4 fili

utilizzata per misure di grande precisione

Termometri a coppia termoelettrica, termocoppie:

- sono formate dalla giunzione di due fili metallici di materiale diverso (A, B).
- per l'effetto termoelettrico si genera una forza elettromotrice proporzionale alla differenza tra la temperatura del giunto caldo (misura) e quella del giunto freddo (riferimento).

Il collegamento tra il giunto intermedio e il giunto freddo deve essere realizzato con cavo di estensione (compensato)che deve generare la stessa fem della termocoppia nel punto di collegamento (max 80°C).

Attenzione: nel collegamento del cavo di estensione è necessario rispettare le polarità, diversamente si commette un errore importante:

Caratteristiche di impiego delle termocoppie più comuni

Tipo t° raccomandata		Stabilità e riproducibilità	Limiti di impiego		
T-U	-200 + 200°c	eccellente -200 +200 ma scadente sopra 300	fragilità e ossidazione ad alta temperatura		
E	-200 + 400°c	buona fino a 400 ma limitata sopra	fenomeni di isteresi		
J-L	0 + 600°C	buona fino a 600	scarsa omogeneità e fragilità		
K	-50 + 1100°c	buona sotto 400 ma limitata sopra	ossidazione del cromo in atmosfera scarsamente ossidante e fragilità		
S-R	0+1500°c	eccellente sotto 1200 e buona sopra	sensibile alla contaminazione da vapori metallici, carbonio, zolfo, fosforo		
В	+ 500 + 1700°c	eccellente sotto 1500 e buona sopra			

INFORMAZIONI E CARATTERISTICHE TECNICHE

Termoresistenze e Termocoppie

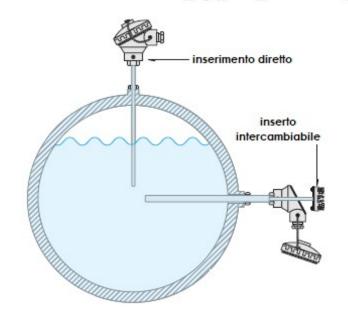
Esempi di montaggio

- sonde diritte con fissaggio a vite o a saldare
- inserzione diretta o con inserto interno intercambiabile

La parte sensibile della sonda (punta) deve essere posta il più vicino possibile alla zona da misurare.

È importante assicurare un buon contatto termico tra la sonda e il mezzo nel quale si effettua il rilievo.

Tipi di terminazione più diffuse


con testa di connessione

con cavo di collegamento

Temperatura	Tolleranza				± 1,75 ————————————————————————————————————			
°C	Classe A		Classe B		± 1,50 — Class 1/3 DIN B [°C]			
Ī	± °C	±Ω	± °C	±Ω	— Class A [Ω]			
-200	0.55	0.24	1.3	0.56	± 1,25 — Class A [°C]			
-100	0.35	0.14	0.8	0.32	- Class B [Ω] + 1 00 - Class B [°C]			
0	0.15	0.06	0.3	0.12	_ 1,00			
100	0.35	0.13	0.8	0.80	± 0,75			
200	0.55	0.20	1.3	0.48	± 0,70			
300	0.75	0.27	1.8	0.64	± 0,50			
400	0.95	0.33	2.3	0.79				
500	1.15	0.38	2.8	0.93	± 0,25			
600	1.35	0.43	3.3	1.06				
650					± 0,00			
700					-50 0 50 100 150 200 250 300 350 400 450 500 550 600			

A confronto termoresistenze e termocoppie										
	Termoresistenza	Termocoppia		Termoresistenza	Termocoppia					
Tipo di misura	Assoluta corrente costante, Ω/°C	Autogenerante differenziale, µV/°C	Campo di t ^o raccomandato	-200750°C	-2001700°C					
Precisione/tolleranza	Ottima (1.8°C @300°C)	Buona (2.5°C @300°C)	Stabilità nel tempo e Ripetibilità	Ottima	Buona					
Velocità di risposta (a parità di dimens.)	Media	Alta	Collegamento	Cavetto in rame (basso costo)	Cavo compensato (alto costo)					
Robustezza meccanica	Buona, sensibile alle vibrazioni se con costruzione non adeguata	Elevata salvo che per guaine ceramiche sensibili agli urti/vibrazioni e shock termici	Costo termoelemento	Basso filo sottile Medio ceramico Alto vetro	Basso fina a 1000°C Alto oltre 1000°C					

LA GAMMA PREVEDE ALTRE TIPOLOGIE DI SONDE TEMOMETRICHE

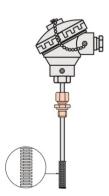
Realizzate con materiali diversi e particolari tecniche produttive.

Altre soluzioni sono possibili a richiesta e su disegno del cliente.

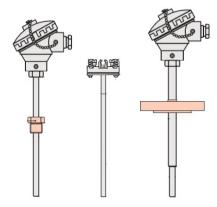
Le costruzioni sotto riportate, si possono avere con elemento a coppia termoelettrica "termocoppie".

Termoresistenza serie E0

- sonda per rilievi aerotermici
- termoresistenza ad alta velocità di risposta
- puntale alettato in scatola di connessione
- montaggio a parete e protezione IP65
- elemento singolo, doppio o con trasmettitore 4/20mA a bordo


Termoresistenza serie E4

- sonda per rilievi aerotermici
- termoresistenza ad alta velocità di risposta
- puntale asolato con testa di connessione
- montaggio in condotta e protezione IP67
- elemento singolo, doppio o con trasmettitore 4/20mA a bordo


Termoresistenza serie E9

- sonda per rilievi aerotermici
- termoresistenza ad alta velocità di risposta
- puntale alettato con testa di connessione
- montaggio in condotta e protezione IP67
- elemento singolo, doppio o con trasmettitore 4/20mA a bordo

Termoresistenza serie G1 ... G6

- sonda con inserto intercambiabile
- termoresistenza per medie pressioni
- guaina diritta standard o rastremata (maggiore sensibilità)
- testa di connessione standard IP67 o EEx d
- montaggio in condotta con o senza pozzetto
- elemento singolo, doppio o con trasmettitore 4/20mA a bordo

